Search results for "UNFOLDED PROTEIN RESPONSE"

showing 10 items of 86 documents

Loss of Arabidopsis p24 function affects ERD2 traffic and Golgi structure and activates the unfolded protein response

2017

The p24 family of proteins (also known as the TMED family) are key regulators of protein trafficking along the secretory pathway, but very little is known about their functions in plants. A quadruple loss-of-function mutant affecting the p24 genes from the δ-1 subclass of the p24δ subfamily (p24δ3δ4δ5δ6) showed alterations in the Golgi, suggesting that these p24 proteins play a role in the organization of the compartments of the early secretory pathway in Arabidopsis Loss of p24δ-1 proteins also induced the accumulation of the K/HDEL receptor ERD2a (ER lumen protein-retaining receptor A) at the Golgi and increased secretion of BiP family proteins, ER chaperones containing an HDEL signal, pr…

0106 biological sciences0301 basic medicineEndoplasmic reticulumMutantCell BiologyBiologyGolgi apparatusbiology.organism_classification01 natural sciencesCell biology03 medical and health sciencessymbols.namesake030104 developmental biologyBiochemistryArabidopsissymbolsUnfolded protein responseSecretionCOPIISecretory pathway010606 plant biology & botanyJournal of Cell Science
researchProduct

Homocysteine Induces Apoptosis of Human Umbilical Vein Endothelial Cells via Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

2017

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspa…

0301 basic medicineAgingArticle SubjectApoptosis030204 cardiovascular system & hematologyTransfectionBiochemistryUmbilical vein03 medical and health sciences0302 clinical medicineRisk FactorsHuman Umbilical Vein Endothelial CellsHumanslcsh:QH573-671Protein kinase AEndoplasmic Reticulum Chaperone BiPHomocysteinebiologylcsh:CytologyKinaseEndoplasmic reticulumCytochrome cCell BiologyGeneral MedicineEndoplasmic Reticulum StressMitochondriaCell biology030104 developmental biologyApoptosiscardiovascular systemUnfolded protein responsebiology.proteinPhosphorylationResearch ArticleOxidative Medicine and Cellular Longevity
researchProduct

Targeting the Endoplasmic Reticulum Unfolded Protein Response to Counteract the Oxidative Stress-Induced Endothelial Dysfunction

2017

In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the U…

0301 basic medicineAgingProgrammed cell deathendocrine systemOxidative phosphorylationReview Articlemedicine.disease_causeEndoplasmic ReticulumBiochemistryINITIATION-FACTOR 2-ALPHA03 medical and health sciencesProgrammed cell-deathSELECTIVE-INHIBITIONProgrammed cell-death;TXNIP/NLRP3 INFLAMMASOME ACTIVATION; MITOCHONDRIAL ELECTRON-TRANSPORT; SPONTANEOUSLY HYPERTENSIVE-RATS; INITIATION-FACTOR 2-ALPHA; CORONARY-ARTERY FUNCTION; ER STRESS; SELECTIVE-INHIBITION; MESSENGER-RNA; TRANSMEMBRANE PROTEINmedicineHumansEndothelial dysfunctionlcsh:QH573-671TXNIP/NLRP3 INFLAMMASOME ACTIVATIONSPONTANEOUSLY HYPERTENSIVE-RATSEndothelial Cellbusiness.industrylcsh:CytologyEndoplasmic reticulumfungiEndothelial CellsOxidative StreCell BiologyGeneral MedicineAdaptive responseMITOCHONDRIAL ELECTRON-TRANSPORTER STRESSmedicine.diseaseCell biologyOxidative Stress030104 developmental biologyProteostasisTRANSMEMBRANE PROTEINUnfolded protein responseUnfolded Protein ResponsebusinessMESSENGER-RNAOxidative stressCORONARY-ARTERY FUNCTIONHumanOxidative Medicine and Cellular Longevity
researchProduct

Autophagy is induced by resistance exercise in young men, but unfolded protein response is induced regardless of age.

2017

AIM Autophagy and unfolded protein response (UPR) appear to be important for skeletal muscle homoeostasis and may be altered by exercise. Our aim was to investigate the effects of resistance exercise and training on indicators of UPR and autophagy in healthy untrained young men (n = 12, 27 ± 4 years) and older men (n = 8, 61 ± 6 years) as well as in resistance-trained individuals (n = 15, 25 ± 5 years). METHODS Indicators of autophagy and UPR were investigated from the muscle biopsies after a single resistance exercise bout and after 21 weeks of resistance training. RESULTS Lipidated LC3II as an indicator of autophagosome content increased at 48 hours post-resistance exercise (P < .05) and …

0301 basic medicineAutophagosomeAdultMalemedicine.medical_specialtyTime FactorsPhysiologyta3111Endoplasmic Reticulum03 medical and health sciencesYoung Adult0302 clinical medicineSex FactorsInternal medicinemedicineAutophagyHumansMuscle Strengthta315Muscle SkeletalsolufysiologiaAgedbusiness.industryEndoplasmic reticulumAutophagyResistance trainingAge FactorsAutophagosomesSkeletal muscleResistance TrainingMiddle AgedOxidative Stress030104 developmental biologyEndocrinologymedicine.anatomical_structureAgeingUnfolded protein responseUnfolded Protein ResponsevoimaharjoittelubusinessMicrotubule-Associated Proteins030217 neurology & neurosurgeryHomeostasisMuscle ContractionActa physiologica (Oxford, England)
researchProduct

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis

2020

Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression

0301 basic medicineCancer ResearchCell signalingXBP1Cellular differentiationlcsh:RC254-282Article03 medical and health sciences0302 clinical medicineSettore BIO/13 - Biologia ApplicataTranscription factorChemistryEndoplasmic reticulumextracellular-vesiclesExtracellular vesiclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensCell biologymultiple myelomaUPR-related molecules030104 developmental biologyosteoclastsOncology030220 oncology & carcinogenesisUnfolded protein responsePhosphorylationbone diseaseCancers
researchProduct

Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells

2017

Abstract Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ…

0301 basic medicineCancer ResearchTime FactorsCOPZ1ApoptosisCOPZ1Thyroid cancerThyroid NeoplasmThyroidRNAi TherapeuticCell death; COPZ1; Non-oncogene addiction; Thyroid carcinoma; Animals; Apoptosis; Autophagy; Cell Line Tumor; Cell Survival; Coatomer Protein; Endoplasmic Reticulum Stress; Female; Gene Expression Regulation Neoplastic; Humans; Mice Nude; RNA Interference; Signal Transduction; Thyroid Neoplasms; Time Factors; Transfection; Tumor Burden; Unfolded Protein Response; Xenograft Model Antitumor Assays; RNAi Therapeutics; Oncology; Cancer ResearchEndoplasmic Reticulum StressOncogene AddictionTumor BurdenGene Expression Regulation Neoplasticmedicine.anatomical_structureOncologyFemaleRNA InterferenceNon-oncogene addictionHumanSignal TransductionCell deathProgrammed cell deathXenograft Model Antitumor AssayTime FactorCell SurvivalMice NudeBiologyTransfectionCoatomer ProteinThyroid carcinomaThyroid carcinoma03 medical and health sciencesCell Line TumorAutophagymedicineAnimalsHumansThyroid NeoplasmsEndoplasmic Reticulum StreAnimalAutophagyApoptosimedicine.diseaseXenograft Model Antitumor AssaysRNAi Therapeutics030104 developmental biologyImmunologyUnfolded Protein ResponseCancer researchUnfolded protein response
researchProduct

Ligand-dependent Hedgehog pathway activation in Rhabdomyosarcoma : the oncogenic role of the ligands

2017

Altres ajuts: This work was supported by grants from Institut Català d'Oncologia (ICO), Instituto de Salud Carlos III (RTICC-RD12/0036/0016, /0020, /0035, /0057; and PI14/00647), Fundació A BOSCH, Fundació Amics Joan Petit, ajuts predoctorals del VHIR and RIS3CAT grants COMRDI15-1-0014 (ACCIÓ and FEDER). Altres ajuts: FEDER/COMRDI15-1-0014 Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. The Hedgehog (HH) pathway is known to develop an oncogenic role in RMS. However, the molecular mechanism that drives activation of the pathway in RMS is not well understood. The expression of HH ligands was studied by qPCR, western blot and immunohistochemistry. Functional …

0301 basic medicineCancer ResearchsarcomaCarcinogenesisVismodegibRhabdomyosarcoma; Hedgehog; vismodegib; UPR; TRIB3; sarcoma; cancerVismodegib610ApoptosisMice SCIDUPRLigandsMice03 medical and health sciences0302 clinical medicineCell MovementvismodegibRhabdomyosarcomaTumor Cells CulturedmedicinecancerAnimalsHumansHedgehog ProteinsAutocrine signallingRhabdomyosarcomaHedgehogCell ProliferationCancerChemistryTRIB3Sarcomamedicine.diseaseXenograft Model Antitumor AssaysHedgehog signaling pathway3. Good health030104 developmental biologyOncology030220 oncology & carcinogenesisUnfolded protein responseCancer researchFemaleSignal transductionTranslational TherapeuticsSmoothenedHedgehogSignal TransductionTranscription Factorsmedicine.drug
researchProduct

Nickel toxicity in P. lividus embryos: Dose dependent effects and gene expression analysis.

2018

Abstract Many industrial activities release Nickel (Ni) in the environment with harmful effects for terrestrial and marine organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is more limited. We used Paracentrotus lividus as a model to analyze the effects on the stress pathways in embryos continuously exposed to different Ni doses, ranging from 0.03 to 0.5 mM. We deeply examined the altered embryonic morphologies at 24 and 48 h after Ni exposure. Some different phenotypes have been classified, showing alterations at the expenses of the dorso-ventral axis as well as the skeleton and/or the pigment cells…

0301 basic medicineEmbryo NonmammalianPigment cellmRNASettore BIO/05 - ZoologiaEmbryonic DevelopmentGene ExpressionDevelopmentAquatic ScienceOceanographyParacentrotus lividus03 medical and health sciencesNickelGene expressionAnimalsInvertebrateProtein kinase AGeneSkeletonEchinodermbiologyAnimalChemistryStress responseEmbryoGeneral Medicinebiology.organism_classificationPollutionPhenotypeCell biologyHeavy metal030104 developmental biologyToxicityUnfolded protein responseParacentrotusParacentrotuWater Pollutants ChemicalMarine environmental research
researchProduct

An evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): At the crossroads of poriferan innate immune a…

2017

The mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a recently discovered family of neurotrophic factors. MANF can be secreted but is generally resident within the endoplasmic reticulum (ER) in neuronal and non-neuronal cells, where it is involved in the ER stress response with pro-survival effects. Here we report the discovery of the MANF homolog SDMANF in the sponge Suberites domuncula. The basal positioning of sponges (phylum Porifera) in the animal tree of life offers a unique vantage point on the early evolution of the metazoan-specific genetic toolkit and molecular pathways. Since sponges lack a conventional nervous system, SDMANF presents an enticing opportunity…

0301 basic medicineEvolutionBiophysicsApoptosisBiologyBiochemistrylcsh:Biochemistry03 medical and health sciencesNeurotrophic factorslcsh:QD415-436lcsh:QH301-705.5MANFInnate immunityInnate immune systemEndoplasmic reticulumbiology.organism_classificationTransport inhibitorCell biologyPoriferaSuberites domuncula030104 developmental biologylcsh:Biology (General)Unfolded protein responsebiology.proteinER stressNeurotrophinSuberitesResearch ArticleBiochemistry and Biophysics Reports
researchProduct